skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Norrish, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Andronick, June; de Moura, Leonardo (Ed.)
    There are reinforcement learning scenarios - e.g., in medicine - where we are compelled to be as confident as possible that a policy change will result in an improvement before implementing it. In such scenarios, we can employ off-policy evaluation (OPE). The basic idea of OPE is to record histories of behaviors under the current policy, and then develop an estimate of the quality of a proposed new policy, seeing what the behavior would have been under the new policy. As we are evaluating the policy without actually using it, we have the "off-policy" of OPE. Applying a concentration inequality to the estimate, we derive a confidence interval for the expected quality of the new policy. If the confidence interval lies above that of the current policy, we can change policies with high confidence that we will do no harm. We focus here on the mathematics of this method, by mechanizing the soundness of off-policy evaluation. A natural side effect of the mechanization is both to clarify all the result’s mathematical assumptions and preconditions, and to further develop HOL4’s library of verified statistical mathematics, including concentration inequalities. Of more significance, the OPE method relies on importance sampling, whose soundness we prove using a measure-theoretic approach. In fact, we generalize the standard result, showing it for contexts comprising both discrete and continuous probability distributions. 
    more » « less